NeurIPS 2022 IGLU Challenge - NLP Task
Baseline - BERT Classifier - BM25 Ranker
Official baseline that uses BERT based classifier and BM25 ranker
We train a binary classifier with BERT using huggingface transformers. We also provide an example of using BM25 to rank the set of questions.
Overview¶
This notebook contains the official Baseline for NeurIPS 2022 IGLU Challenge - NLP Task
This task has two parts:
- "When to ask clarifying question" which is a binary classification problem: whether to ask a clarification question or not.
- "What to ask as a clarifying question" which is a ranking problem: how closely the list of human-issued clarifying questions are rank
In this notebook we will:
- Train a BERT based binary classifier for the first task.
- Setup a BM25 based ranker for the second task.
- Submit both the models to the AIcrowd submission format for this competition.
Authors
Negar Arabzadeh (IGLU Team)
Dipam Chakraborty (AIcrowd)
Prerequisites¶
Sign up for the competition π
Login to AIcrowd and download the data (run cells below)
!pip install -U aicrowd-cli
%load_ext aicrowd.magic
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/ Collecting aicrowd-cli Downloading aicrowd_cli-0.1.15-py3-none-any.whl (51 kB) |ββββββββββββββββββββββββββββββββ| 51 kB 4.0 MB/s Requirement already satisfied: toml<1,>=0.10.2 in /usr/local/lib/python3.7/dist-packages (from aicrowd-cli) (0.10.2) Collecting rich<11,>=10.0.0 Downloading rich-10.16.2-py3-none-any.whl (214 kB) |ββββββββββββββββββββββββββββββββ| 214 kB 15.3 MB/s Requirement already satisfied: click<8,>=7.1.2 in /usr/local/lib/python3.7/dist-packages (from aicrowd-cli) (7.1.2) Collecting requests<3,>=2.25.1 Downloading requests-2.28.1-py3-none-any.whl (62 kB) |ββββββββββββββββββββββββββββββββ| 62 kB 1.6 MB/s Requirement already satisfied: tqdm<5,>=4.56.0 in /usr/local/lib/python3.7/dist-packages (from aicrowd-cli) (4.64.0) Collecting requests-toolbelt<1,>=0.9.1 Downloading requests_toolbelt-0.9.1-py2.py3-none-any.whl (54 kB) |ββββββββββββββββββββββββββββββββ| 54 kB 1.8 MB/s Collecting GitPython==3.1.18 Downloading GitPython-3.1.18-py3-none-any.whl (170 kB) |ββββββββββββββββββββββββββββββββ| 170 kB 61.9 MB/s Collecting pyzmq==22.1.0 Downloading pyzmq-22.1.0-cp37-cp37m-manylinux1_x86_64.whl (1.1 MB) |ββββββββββββββββββββββββββββββββ| 1.1 MB 59.3 MB/s Collecting python-slugify<6,>=5.0.0 Downloading python_slugify-5.0.2-py2.py3-none-any.whl (6.7 kB) Requirement already satisfied: semver<3,>=2.13.0 in /usr/local/lib/python3.7/dist-packages (from aicrowd-cli) (2.13.0) Collecting gitdb<5,>=4.0.1 Downloading gitdb-4.0.9-py3-none-any.whl (63 kB) |ββββββββββββββββββββββββββββββββ| 63 kB 1.8 MB/s Requirement already satisfied: typing-extensions>=3.7.4.0 in /usr/local/lib/python3.7/dist-packages (from GitPython==3.1.18->aicrowd-cli) (4.1.1) Collecting smmap<6,>=3.0.1 Downloading smmap-5.0.0-py3-none-any.whl (24 kB) Requirement already satisfied: text-unidecode>=1.3 in /usr/local/lib/python3.7/dist-packages (from python-slugify<6,>=5.0.0->aicrowd-cli) (1.3) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.25.1->aicrowd-cli) (1.24.3) Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.25.1->aicrowd-cli) (2.10) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.25.1->aicrowd-cli) (2022.6.15) Requirement already satisfied: charset-normalizer<3,>=2 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.25.1->aicrowd-cli) (2.1.0) Requirement already satisfied: pygments<3.0.0,>=2.6.0 in /usr/local/lib/python3.7/dist-packages (from rich<11,>=10.0.0->aicrowd-cli) (2.6.1) Collecting commonmark<0.10.0,>=0.9.0 Downloading commonmark-0.9.1-py2.py3-none-any.whl (51 kB) |ββββββββββββββββββββββββββββββββ| 51 kB 7.6 MB/s Collecting colorama<0.5.0,>=0.4.0 Downloading colorama-0.4.5-py2.py3-none-any.whl (16 kB) Installing collected packages: smmap, requests, gitdb, commonmark, colorama, rich, requests-toolbelt, pyzmq, python-slugify, GitPython, aicrowd-cli Attempting uninstall: requests Found existing installation: requests 2.23.0 Uninstalling requests-2.23.0: Successfully uninstalled requests-2.23.0 Attempting uninstall: pyzmq Found existing installation: pyzmq 23.2.0 Uninstalling pyzmq-23.2.0: Successfully uninstalled pyzmq-23.2.0 Attempting uninstall: python-slugify Found existing installation: python-slugify 6.1.2 Uninstalling python-slugify-6.1.2: Successfully uninstalled python-slugify-6.1.2 Successfully installed GitPython-3.1.18 aicrowd-cli-0.1.15 colorama-0.4.5 commonmark-0.9.1 gitdb-4.0.9 python-slugify-5.0.2 pyzmq-22.1.0 requests-2.28.1 requests-toolbelt-0.9.1 rich-10.16.2 smmap-5.0.0
%aicrowd login
#login to AI crowd to download the data
Please login here: https://api.aicrowd.com/auth/GAwDByCr2kalh8JLtQdROIvnmTw5fsl9F73ZzmJqf6g API Key valid Gitlab access token valid Saved details successfully!
!mkdir public_data
%aicrowd dataset download -c neurips-2022-iglu-challenge-nlp-task -o public_data
Train a BERT classifier - "When to ask clarifying question" ❓¶
We fine-tune a large pre-trained language model (BERT) with a classification layer on top.
Modelsβ performance is reported using the official metric - Macro average F1 Score.
Install Huggingface transformers and other libraries 🤗¶
!pip3 install transformers
!pip install scikit-learn
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/ Collecting transformers Downloading transformers-4.21.1-py3-none-any.whl (4.7 MB) |ββββββββββββββββββββββββββββββββ| 4.7 MB 7.6 MB/s Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from transformers) (2.28.1) Collecting pyyaml>=5.1 Downloading PyYAML-6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (596 kB) |ββββββββββββββββββββββββββββββββ| 596 kB 62.3 MB/s Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from transformers) (3.7.1) Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.7/dist-packages (from transformers) (21.3) Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.7/dist-packages (from transformers) (4.64.0) Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from transformers) (4.12.0) Collecting tokenizers!=0.11.3,<0.13,>=0.11.1 Downloading tokenizers-0.12.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.6 MB) |ββββββββββββββββββββββββββββββββ| 6.6 MB 45.6 MB/s Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (1.21.6) Collecting huggingface-hub<1.0,>=0.1.0 Downloading huggingface_hub-0.8.1-py3-none-any.whl (101 kB) |ββββββββββββββββββββββββββββββββ| 101 kB 12.8 MB/s Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (2022.6.2) Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0,>=0.1.0->transformers) (4.1.1) Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging>=20.0->transformers) (3.0.9) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->transformers) (3.8.1) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2022.6.15) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (1.24.3) Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2.10) Requirement already satisfied: charset-normalizer<3,>=2 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2.1.0) Installing collected packages: pyyaml, tokenizers, huggingface-hub, transformers Attempting uninstall: pyyaml Found existing installation: PyYAML 3.13 Uninstalling PyYAML-3.13: Successfully uninstalled PyYAML-3.13 Successfully installed huggingface-hub-0.8.1 pyyaml-6.0 tokenizers-0.12.1 transformers-4.21.1 Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/ Requirement already satisfied: scikit-learn in /usr/local/lib/python3.7/dist-packages (1.0.2) Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn) (3.1.0) Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn) (1.1.0) Requirement already satisfied: scipy>=1.1.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn) (1.7.3) Requirement already satisfied: numpy>=1.14.6 in /usr/local/lib/python3.7/dist-packages (from scikit-learn) (1.21.6)
from dataclasses import dataclass
import os
import datetime
import pickle
import numpy as np
import random
import torch
import pandas as pd
from torch.utils.data import TensorDataset
from transformers import BertTokenizer, RobertaTokenizer, BartTokenizer
from sklearn.metrics import precision_score, recall_score, f1_score
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler)
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import BertForSequenceClassification, AdamW, get_linear_schedule_with_warmup
from transformers import RobertaForSequenceClassification, BartForSequenceClassification
from tqdm.auto import tqdm
Hyperparameters¶
model_name = 'bert'
max_seq_length=128
batch_size=16
epoch=2
lr=5e-6
seed_val = 42
Proprocessing - Tokenize the text data for BERT¶
def get_tensor_dataset(df,tokenizer):
# Tokenize all of the sentences and map the tokens to thier word IDs.
input_ids = []
token_type_ids = []
attention_masks = []
labels = []
topic_ids = []
for count, item in tqdm(enumerate(zip(df["GameId"],
df['InputInstruction'], df["IsInstructionClear"])),
total=len(df), desc='Tokenizing data'):
z, x, y = item
encoded_dict = tokenizer.encode_plus(
x.lower(),
add_special_tokens = True,
max_length = max_seq_length,
pad_to_max_length = True,
truncation=True,
return_attention_mask = True,
return_tensors = 'pt',
)
input_ids.append(encoded_dict['input_ids'])
if "token_type_ids" in encoded_dict:
token_type_ids.append(encoded_dict['token_type_ids'])
attention_masks.append(encoded_dict['attention_mask'])
labels.append(y)
topic_ids.append(z)
input_ids = torch.cat(input_ids, dim=0)
attention_masks = torch.cat(attention_masks, dim=0)
labels = torch.tensor(labels)
return TensorDataset(input_ids, attention_masks, labels)
from sklearn.model_selection import train_test_split
data_path='public_data/clarifying_questions_train.csv'
df = pd.read_csv(data_path, sep=",")
dftrain, dfdev = train_test_split(df, test_size=0.15)
dfdev.to_csv('public_data/clarifying_questions_val.csv', index=False)
for df in [dfdev,dftrain]:
if df.shape ==dfdev.shape:
data_type='dev'
else:
data_type='train'
df['IsInstructionClear'] = df.IsInstructionClear.replace({'Yes': 0, 'No': 1})
if model_name == 'bart':
tokenizer = BartTokenizer.from_pretrained('facebook/bart-base')
elif model_name == 'roberta':
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
elif model_name == 'bert':
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
dataset = get_tensor_dataset(df,tokenizer)
tensor_data=f"{model_name}_{data_type}.pkl"
with open(tensor_data, 'wb') as f:
pickle.dump(dataset, f)
tokenizer.save_pretrained("saved_tokenizer")
/usr/local/lib/python3.7/dist-packages/transformers/tokenization_utils_base.py:2329: FutureWarning: The `pad_to_max_length` argument is deprecated and will be removed in a future version, use `padding=True` or `padding='longest'` to pad to the longest sequence in the batch, or use `padding='max_length'` to pad to a max length. In this case, you can give a specific length with `max_length` (e.g. `max_length=45`) or leave max_length to None to pad to the maximal input size of the model (e.g. 512 for Bert). FutureWarning,
('saved_tokenizer/tokenizer_config.json', 'saved_tokenizer/special_tokens_map.json', 'saved_tokenizer/vocab.txt', 'saved_tokenizer/added_tokens.json')
Train Classifier 🏋️♀️¶
def train_model( model_name, model, train_dataloader, scheduler, optimizer, criterion, epochs, lr):
random.seed(seed_val)
np.random.seed(seed_val)
torch.manual_seed(seed_val)
torch.cuda.manual_seed_all(seed_val)
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
print(device)
# For each epoch...
for epoch in range(epochs):
total_train_loss = 0
train_n_correct = 0
nb_tr_examples = 0
model.train()
for _, batch in tqdm(enumerate(train_dataloader),
total=len(train_dataloader),
desc=f'Train epoch {epoch+1}/{epochs}'):
b_input_ids = batch[0].to(device)
b_input_mask = batch[1].to(device)
b_labels = batch[2].to(device)
model.zero_grad()
result = model(b_input_ids, attention_mask=b_input_mask)
loss = criterion(result.logits, b_labels)
loss.backward()
total_train_loss += loss.item()
optimizer.step()
scheduler.step()
logits = result.logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
_, _, _, accuracy = eval_result(logits, label_ids)
train_n_correct += accuracy
nb_tr_examples+=b_input_ids.size(0)
avg_train_loss = total_train_loss / len(train_dataloader)
train_acc = train_n_correct / len(train_dataloader)
print('Epoch [{}/{}], Train Loss: {:.4f}, Train Accuracy: {:.4f} '.format(epoch+1, epochs, avg_train_loss, train_acc ))
print("Training complete!")
model.save_pretrained(f"saved_model/{model_name}_{epochs}e_{lr}lr")
model.save_pretrained(f"drive/MyDrive/IGLU-cq-data/{model_name}_{epochs}e_{lr}lr")
def eval_result(preds, labels):
""" Calculate the accuracy, f1, precision, recall of our predictions vs labels
"""
y_pred = np.argmax(preds, axis=1).flatten()
y_true = labels.flatten()
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred, average='macro')
accuracy = np.sum(y_pred == y_true) / len(y_true)
return (precision, recall, f1, accuracy)
from sklearn.metrics import classification_report
def eval_model( model, epoch,lr,test_dataloader):
if torch.cuda.is_available():
device = torch.device("cuda")
model.cuda()
else:
device = torch.device("cpu")
model.eval()
test_results = []
test_labels = []
test_results_predicted_lavels = []
for batch in tqdm(test_dataloader, desc='Eval model'):
b_input_ids = batch[0].to(device)
b_input_mask = batch[1].to(device)
b_labels = batch[2].to(device)
with torch.no_grad():
result = model(b_input_ids,
attention_mask=b_input_mask,
labels=b_labels,
return_dict=True)
logits = result.logits
logits = logits.detach().cpu().numpy()
test_results.extend(logits.tolist())
tmp = np.asarray(logits.tolist())
test_results_predicted_lavels.extend(np.argmax(tmp, axis=1).flatten())
label_ids = b_labels.to('cpu').numpy()
test_labels.extend(label_ids)
print(classification_report( np.asarray(test_labels), np.asarray(test_results_predicted_lavels)))
(precision, recall, f1, accuracy) = eval_result(np.asarray(test_results), np.asarray(test_labels))
print('Test Precision: {:.4f}, Test Recall: {:.4f}, Test Macro F1: {:.4f}, Test Accuracy: {:.4f} ' .format(precision, recall, f1, accuracy))
df = pd.DataFrame(test_results, columns=["0", "1"])
df['y_True'] = test_labels
#print(df.head())
df.to_csv( f"Final_Test_Probanility_Distribution_{model_name}_{epoch}e_{lr}lr_eval.csv", index=False)
print("============================================================")
print(f" {epoch} -- {lr} -- {datetime.datetime.now()}")
print("============================================================")
with open(f'{model_name}_train.pkl', 'rb') as f:
train_dataset = pickle.load(f)
train_dataloader = DataLoader(
train_dataset,
sampler = RandomSampler(train_dataset),
batch_size = batch_size,
num_workers= 4
)
if model_name == 'bart':
model = BartForSequenceClassification.from_pretrained(
"facebook/bart-base",
num_labels=2,
)
elif model_name == 'roberta':
model = RobertaForSequenceClassification.from_pretrained(
"roberta-base",
num_labels=2,
)
else:
model = BertForSequenceClassification.from_pretrained(
'bert-base-uncased',
num_labels=2,
)
model.cuda()
optimizer = AdamW(
model.parameters(),
lr = lr,
)
criterion = CrossEntropyLoss()
total_steps = len(train_dataloader) * epoch
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps = 0,
num_training_steps = total_steps)
# Train Model
train_model( model_name,model, train_dataloader, scheduler, optimizer, criterion, epoch, lr)
============================================================ 2 -- 5e-06 -- 2022-08-08 02:49:56.918983 ============================================================
/usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py:560: UserWarning: This DataLoader will create 4 worker processes in total. Our suggested max number of worker in current system is 2, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary. cpuset_checked))
Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.decoder.weight', 'cls.seq_relationship.bias'] - This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model). - This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight'] You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
cuda
/usr/local/lib/python3.7/dist-packages/transformers/optimization.py:310: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning FutureWarning,
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
Epoch [1/2], Train Loss: 0.3488, Train Accuracy: 0.8675
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py:560: UserWarning: This DataLoader will create 4 worker processes in total. Our suggested max number of worker in current system is 2, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary. cpuset_checked))
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 due to no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
Epoch [2/2], Train Loss: 0.2938, Train Accuracy: 0.8866 Training complete!
Evaluate classifier¶
model = BertForSequenceClassification.from_pretrained(f"saved_model/{model_name}_{epoch}e_{lr}lr")
with open(f"{model_name}_dev.pkl", 'rb') as f:
test_dataset = pickle.load(f)
test_dataloader = DataLoader(
test_dataset,
sampler = RandomSampler(test_dataset),
batch_size = batch_size
)
eval_model( model, epoch,lr,test_dataloader)
precision recall f1-score support 0 0.91 0.99 0.95 882 1 0.84 0.39 0.53 143 accuracy 0.90 1025 macro avg 0.87 0.69 0.74 1025 weighted avg 0.90 0.90 0.89 1025 Test Precision: 0.8358, Test Recall: 0.3916, Test Macro F1: 0.7400, Test Accuracy: 0.9044
Ranking using BM25 - "What to ask as a clarifying question" 📝¶
We'll not train any model for this baseline, we'll simply use BM25 with is already a strong ranker.
What's your ideas to improve scores above BM25? π
Installing requirements and dependencies¶
!pip install pytrec_eval
!pip install rank_bm25
!pip install ast
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/ Collecting pytrec_eval Downloading pytrec_eval-0.5.tar.gz (15 kB) Building wheels for collected packages: pytrec-eval Building wheel for pytrec-eval (setup.py) ... done Created wheel for pytrec-eval: filename=pytrec_eval-0.5-cp37-cp37m-linux_x86_64.whl size=263742 sha256=ad9f07c04a51e0fd2a880164e863da0b9a9723af56f0545958628ece51ccf720 Stored in directory: /root/.cache/pip/wheels/42/96/77/0829b8b2606f90f61ba10a51277629d2b615604e122ee932f4 Successfully built pytrec-eval Installing collected packages: pytrec-eval Successfully installed pytrec-eval-0.5 Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/ Collecting rank_bm25 Downloading rank_bm25-0.2.2-py3-none-any.whl (8.6 kB) Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from rank_bm25) (1.21.6) Installing collected packages: rank-bm25 Successfully installed rank-bm25-0.2.2 Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/ Collecting ast Downloading AST-0.0.2.tar.gz (19 kB) WARNING: Discarding https://files.pythonhosted.org/packages/4b/fb/2b954d2a38c9a0ef1da6a46737a75b4dbf6f60e5dad0f267a4ec5ece20de/AST-0.0.2.tar.gz#sha256=dc5b79c6ba11aea72c59c791a0bc5ae483b4c18fec6f643002d6fae24361eba0 (from https://pypi.org/simple/ast/). Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output. Downloading AST-0.0.1.tar.gz (19 kB) WARNING: Discarding https://files.pythonhosted.org/packages/a8/5a/5497b01657ead33200c98009cb9e78fe5986c90cc39ddaa64306f37472cf/AST-0.0.1.tar.gz#sha256=3ed8a7bd3526cfc46de1b849d92b03ae4600ed2042151f187b756c50ade5c2b0 (from https://pypi.org/simple/ast/). Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output. ERROR: Could not find a version that satisfies the requirement ast (from versions: 0.0.1, 0.0.2) ERROR: No matching distribution found for ast
import pandas as pd
from statistics import mean
import os
import logging
import os
import sys
import random
import numpy as np
import pandas as pd
from rank_bm25 import BM25Okapi
import nltk
from nltk.stem.porter import PorterStemmer
import numpy as np
nltk.download('punkt')
nltk.download('stopwords')
def stem_tokenize(text, remove_stopwords=True):
stemmer = PorterStemmer()
tokens = [word for sent in nltk.sent_tokenize(text) \
for word in nltk.word_tokenize(sent)]
tokens = [word for word in tokens if word not in \
nltk.corpus.stopwords.words('english')]
return [stemmer.stem(word) for word in tokens]
np.random.seed(42)
random.seed(42)
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[
logging.StreamHandler(sys.stdout)
]
)
[nltk_data] Downloading package punkt to /root/nltk_data... [nltk_data] Unzipping tokenizers/punkt.zip. [nltk_data] Downloading package stopwords to /root/nltk_data... [nltk_data] Unzipping corpora/stopwords.zip.
Dataloader¶
from sklearn.model_selection import train_test_split
#selecting part of data for dev set for testing
data_path='public_data/clarifying_questions_train.csv'
df = pd.read_csv(data_path, sep=",")
test = df.drop(columns=['InitializedWorldPath','IsInstructionClear','Partition'])
test = test[~test["ClarifyingQuestion"].isnull()]
#preprocessing question bank for BM25
question_bank_path = 'public_data/question_bank.csv'
question_bank = pd.read_csv(question_bank_path).fillna('')
question_bank['tokenized_question_list'] = question_bank['ClarifyingQuestion'].map(stem_tokenize)
question_bank['tokenized_question_str'] = question_bank['tokenized_question_list'].map(lambda x: ' '.join(x))
Run BM25¶
We'll use the 'qrel' column of the dataset to create a corpus to rank from. Then use BM25 to rank each question for every input instruction that has a clarifying question in the dataset.
import ast
print(test.head())
run_file_path = 'dev_bm25'
run_file= open(run_file_path, 'w')
for index, row in test.iterrows():
list_of_qs=ast.literal_eval(test['qbank'][index])
GameId= test['GameId'][index]
temp_q_bank=question_bank[question_bank['qrel'].isin(list_of_qs)]
bm25_corpus = temp_q_bank['tokenized_question_list'].tolist() #creating a seperate corpus for each GameId
bm25 = BM25Okapi(bm25_corpus)
#print(temp_q_bank.head())
top_k=len(bm25_corpus)
# Runs bm25 for every query and stores output in file.
examples = []
all_preds_bm25 = []
query = test.loc[test['GameId']==GameId, 'InputInstruction'].tolist()[0]
bm25_ranked_list = bm25.get_top_n(stem_tokenize(query, True),
bm25_corpus,
n=top_k)
bm25_q_list = [' '.join(sent) for sent in bm25_ranked_list]
docs = temp_q_bank.set_index('tokenized_question_str').loc[bm25_q_list, 'ClarifyingQuestion'].tolist()
preds = temp_q_bank.set_index('tokenized_question_str').loc[bm25_q_list, 'qrel'].tolist()
for i, questionid in enumerate(preds):
#writing results to runfile
run_file.write('{} 0 {} {} {} BM25-reranker\n'.format(GameId,questionid, i+1, (len(preds)-i)/100))
run_file.close()
GameId ClarifyingQuestion \ 3 CQ-game-1000 Which color blocks? 5 CQ-game-1002 After you remove the one green block there are... 16 CQ-game-1011 in any square west of the red blocks? 25 CQ-game-1020 Should I destory east or west puyrple? 55 CQ-game-1055 Where exactly am I placing the blue blocks? InputInstruction qrel \ 3 Place four blocks to the east of the highest b... q_149 5 facing north destroy a green block located on ... q_436 16 Stack seven green blocks immediately to the we... q_111 25 Facing north place one purple block to the lef... q_653 55 facing northdelete top 2 purple blocks on Righ... q_170 qbank 3 'q_696', 'q_203', 'q_516', 'q_677', 'q_769', '... 5 'q_928', 'q_46', 'q_191', 'q_462', 'q_400', 'q... 16 'q_101', 'q_186', 'q_878', 'q_188', 'q_198', '... 25 'q_659', 'q_635', 'q_980', 'q_380', 'q_804', '... 55 'q_526', 'q_354', 'q_347', 'q_82', 'q_443', 'q...
Evaluate on whole dataset¶
Since there is no training step, here we evaluate BM25 entire dataset.
# evalauting run_file_path in terms of MRR@5,10,20
topic_df = test
topic_question_set_dict = topic_df.groupby('GameId')['qrel'].agg(set).to_dict()
ambigous_questions_count=0
for v in topic_question_set_dict.values():
ambigous_questions_count+= len(v)
run_df = pd.read_csv(run_file_path, sep=' ', header=None)
run_df = run_df.sort_values(by=[0, 4], ascending=False).drop_duplicates(subset=[0, 4], keep='first')
run_question_set_list = run_df.groupby(0)[2].agg(list).to_dict()
topk_list = [5, 10, 20]
mrr_score_dict = {}
for topk in topk_list:
metric_name = 'MRR{}'.format(topk)
mrr_score_dict[metric_name] = {}
for tid in topic_question_set_dict:
try:
qrel= list(topic_question_set_dict[tid])[0]
rr= 1/ (run_question_set_list[tid][:topk].index(qrel) + 1 )
except:
rr=0
mrr_score_dict[metric_name][tid] = rr
mean_performance = {}
for metric in mrr_score_dict:
mean_performance[metric] = sum(mrr_score_dict[metric][k] for k in mrr_score_dict[metric])/ambigous_questions_count
for metric in mrr_score_dict:
print('{}: {}'.format(metric, mean_performance[metric]))
MRR5: 0.32202247191011213 MRR10: 0.33552434456928826 MRR20: 0.34432871423613903
Clone starter kit¶
!git clone http://gitlab.aicrowd.com/aicrowd/challenges/iglu-challenge-2022/iglu-2022-clariq-nlp-starter-kit.git
Cloning into 'iglu-2022-clariq-nlp-starter-kit'... remote: Enumerating objects: 213, done. remote: Counting objects: 100% (55/55), done. remote: Compressing objects: 100% (38/38), done. remote: Total 213 (delta 30), reused 33 (delta 16), pack-reused 158 Receiving objects: 100% (213/213), 176.29 KiB | 408.00 KiB/s, done. Resolving deltas: 100% (112/112), done.
gitfolder = '/content/iglu-2022-clariq-nlp-starter-kit/'
Copy data and model weights¶
Note: NLTK data is copied because internet is not available during evaluation
# Make folder for bert model
!mkdir -p {gitfolder}/models/classifiers/bert_baseline/saved_model
# Copy saved tokenizer and model
!cp -r saved_tokenizer/ {gitfolder}/models/classifiers/bert_baseline/
!cp -r saved_model/{model_name}_{epoch}e_{lr}lr/* {gitfolder}/models/classifiers/bert_baseline/saved_model
# Copy nltk data
!mv /root/nltk_data/ {gitfolder}/models/rankers/nltk_data/
Create BERT Classifier for inference class as per AIcrowd's spec¶
%%writefile {gitfolder}/models/classifiers/bert_baseline.py
import numpy as np
import torch
from transformers import BertTokenizer
from transformers import BertForSequenceClassification
class BERTClassifier:
def __init__(self):
self.tokenizer = BertTokenizer.from_pretrained("models/classifiers/bert_baseline/saved_tokenizer")
self.max_seq_length = 128
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.model = BertForSequenceClassification.from_pretrained("models/classifiers/bert_baseline/saved_model")
self.model.to(self.device)
def raise_aicrowd_error(self, msg):
""" Will be used by the evaluator to provide logs, DO NOT CHANGE """
raise NameError(msg)
def clarification_required(self, instruction, gridworld_state):
"""
Implements classifier for given instuction - whether a clarifying question is required or not
Inputs:
instruction - Single instruction string
gridworld_state - Internal state from the iglu-gridworld simulator corresponding to the instuction
NOTE: The state will only contain the "avatarInfo" and "worldEndingState"
Outputs:
0 or 1 - 0 if clarification is not required, 1 if clarification is required
"""
with torch.no_grad():
encoded_dict = self.tokenizer.encode_plus(
instruction.lower(),
add_special_tokens = True,
max_length = self.max_seq_length,
pad_to_max_length = True,
truncation=True,
return_attention_mask = True,
return_tensors = 'pt',
)
inputs = encoded_dict['input_ids'].to(self.device)
attention_mask = encoded_dict['attention_mask'].to(self.device)
results = self.model(inputs, attention_mask=attention_mask)
return np.argmax(results.logits.cpu().numpy())
Writing /content/iglu-2022-clariq-nlp-starter-kit//models/classifiers/bert_baseline.py
Create BM25 ranker class as per AIcrowd's spec¶
%%writefile {gitfolder}/models/rankers/bm25_baseline.py
from rank_bm25 import BM25Okapi
import nltk
from nltk.stem.porter import PorterStemmer
import numpy as np
import os
nltk.data.path = [os.path.join(os.getcwd(), 'models/rankers/nltk_data')]
def stem_tokenize(text, remove_stopwords=True):
stemmer = PorterStemmer()
tokens = [word for sent in nltk.sent_tokenize(text) \
for word in nltk.word_tokenize(sent)]
tokens = [word for word in tokens if word not in \
nltk.corpus.stopwords.words('english')]
return [stemmer.stem(word) for word in tokens]
class BM25Ranker:
def __init__(self):
pass
def raise_aicrowd_error(self, msg):
""" Will be used by the evaluator to provide logs, DO NOT CHANGE """
raise NameError(msg)
def rank_questions(self, instruction, gridworld_state, question_bank):
"""
Implements the ranking function for a given instruction
Inputs:
instruction - Single instruction string, may or may not need any clarifying question
The evaluator may pass questions that don't need clarification,
But only questions requiring clarifying questions will be scored
gridworld_state - Internal state from the iglu-gridworld simulator corresponding to the instuction
NOTE: The state will only contain the "avatarInfo" and "worldEndingState"
question_bank - List of clarifying questions to rank
Outputs:
ranks - A sorted list of questions from the question bank
Such that the first index corresponds to the best ranked question
"""
tokenized_questions = [stem_tokenize(q) for q in question_bank]
token_question_map = {' '.join(tq): q for q, tq in zip(question_bank, tokenized_questions)}
bm25 = BM25Okapi(tokenized_questions)
tokenized_instruction = stem_tokenize(instruction, True)
bm25_ranked_tokenized_questions = bm25.get_top_n(tokenized_instruction, tokenized_questions, n=len(tokenized_questions))
ranked_joined_sentences = [' '.join(tq) for tq in bm25_ranked_tokenized_questions]
ranked_question_list = [token_question_map[sent] for sent in ranked_joined_sentences]
return ranked_question_list
Writing /content/iglu-2022-clariq-nlp-starter-kit//models/rankers/bm25_baseline.py
Setup out model paths in user_config¶
%%writefile {gitfolder}/models/user_config.py
from models.classifiers.bert_baseline import BERTClassifier
from models.rankers.bm25_baseline import BM25Ranker
UserClassifer = BERTClassifier
UserRanker = BM25Ranker
Overwriting /content/iglu-2022-clariq-nlp-starter-kit//models/user_config.py
Setup to use GPU during evalution 💻¶
%%writefile {gitfolder}/aicrowd.json
{
"challenge_id": "neurips-2022-iglu-challenge-nlp-task",
"authors": [
"iglu-team"
],
"description": "BERT Classifier and BM25 Ranker",
"gpu": true
}
Overwriting /content/iglu-2022-clariq-nlp-starter-kit//aicrowd.json
Add libraries we need to install during evaluation¶
%%writefile -a {gitfolder}/requirements.txt
transformers
rank_bm25
nltk
torch
Appending to /content/iglu-2022-clariq-nlp-starter-kit//requirements.txt
!cp public_data/clarifying_questions_val.csv {gitfolder}/public_data/clarifying_questions_train.csv
!cp public_data/question_bank.csv {gitfolder}/public_data/question_bank.csv
Check the local evaluator ✅¶
%cd {gitfolder}
!python local_evaluation.py
/content/iglu-2022-clariq-nlp-starter-kit local_evaluation.py:26: UserWarning: Please unzip the task states zip and place the initial_world_states directory in the public_data folder UserWarning) local_evaluation.py:27: UserWarning: Skipping state usage warnings.warn("Skipping state usage", UserWarning) Running classifier: 0% 0/1025 [00:00<?, ?it/s]/usr/local/lib/python3.7/dist-packages/transformers/tokenization_utils_base.py:2329: FutureWarning: The `pad_to_max_length` argument is deprecated and will be removed in a future version, use `padding=True` or `padding='longest'` to pad to the longest sequence in the batch, or use `padding='max_length'` to pad to a max length. In this case, you can give a specific length with `max_length` (e.g. `max_length=45`) or leave max_length to None to pad to the maximal input size of the model (e.g. 512 for Bert). FutureWarning, Running classifier: 100% 1025/1025 [00:11<00:00, 86.78it/s] Running ranker: 100% 143/143 [00:30<00:00, 4.65it/s] ===================== Final scores ======================= Binned F1 Score 0.65 MRR for Ranker 0.36549883571603015 F1 Score for Classifier 0.7400362318840579
Final submission 🚀¶
%cd {gitfolder}
!source submit.sh "BERT Classifier and BM25 Ranker Official Baseline"
/content/iglu-2022-clariq-nlp-starter-kit Git setup dont have email defined, setting it to "3903-dipam@users.noreply.gitlab.aicrowd.com" Making submission as "dipam" Checking git remote settings... Using gitlab.aicrowd.com/dipam/iglu-2022-clariq-nlp-starter-kit as the submission repository Updated git hooks. Git LFS initialized. [master 10a12c4] Changes for submission-BERT-Classifier-and-BM25-Ranker-Official-Baseline 82 files changed, 2370582 insertions(+), 9 deletions(-) create mode 100644 models/classifiers/bert_baseline.py create mode 100644 models/classifiers/bert_baseline/saved_model/config.json create mode 100644 models/classifiers/bert_baseline/saved_model/pytorch_model.bin create mode 100644 models/classifiers/bert_baseline/saved_tokenizer/special_tokens_map.json create mode 100644 models/classifiers/bert_baseline/saved_tokenizer/tokenizer_config.json create mode 100644 models/classifiers/bert_baseline/saved_tokenizer/vocab.txt create mode 100644 models/rankers/bm25_baseline.py create mode 100644 models/rankers/nltk_data/corpora/stopwords.zip create mode 100644 models/rankers/nltk_data/corpora/stopwords/README create mode 100644 models/rankers/nltk_data/corpora/stopwords/arabic create mode 100644 models/rankers/nltk_data/corpora/stopwords/azerbaijani create mode 100644 models/rankers/nltk_data/corpora/stopwords/basque create mode 100644 models/rankers/nltk_data/corpora/stopwords/bengali create mode 100644 models/rankers/nltk_data/corpora/stopwords/catalan create mode 100644 models/rankers/nltk_data/corpora/stopwords/chinese create mode 100644 models/rankers/nltk_data/corpora/stopwords/danish create mode 100644 models/rankers/nltk_data/corpora/stopwords/dutch create mode 100644 models/rankers/nltk_data/corpora/stopwords/english create mode 100644 models/rankers/nltk_data/corpora/stopwords/finnish create mode 100644 models/rankers/nltk_data/corpora/stopwords/french create mode 100644 models/rankers/nltk_data/corpora/stopwords/german create mode 100644 models/rankers/nltk_data/corpora/stopwords/greek create mode 100644 models/rankers/nltk_data/corpora/stopwords/hebrew create mode 100644 models/rankers/nltk_data/corpora/stopwords/hinglish create mode 100644 models/rankers/nltk_data/corpora/stopwords/hungarian create mode 100644 models/rankers/nltk_data/corpora/stopwords/indonesian create mode 100644 models/rankers/nltk_data/corpora/stopwords/italian create mode 100644 models/rankers/nltk_data/corpora/stopwords/kazakh create mode 100644 models/rankers/nltk_data/corpora/stopwords/nepali create mode 100644 models/rankers/nltk_data/corpora/stopwords/norwegian create mode 100644 models/rankers/nltk_data/corpora/stopwords/portuguese create mode 100644 models/rankers/nltk_data/corpora/stopwords/romanian create mode 100644 models/rankers/nltk_data/corpora/stopwords/russian create mode 100644 models/rankers/nltk_data/corpora/stopwords/slovene create mode 100644 models/rankers/nltk_data/corpora/stopwords/spanish create mode 100644 models/rankers/nltk_data/corpora/stopwords/swedish create mode 100644 models/rankers/nltk_data/corpora/stopwords/tajik create mode 100644 models/rankers/nltk_data/corpora/stopwords/turkish create mode 100644 models/rankers/nltk_data/tokenizers/punkt.zip create mode 100644 models/rankers/nltk_data/tokenizers/punkt/PY3/README create mode 100644 models/rankers/nltk_data/tokenizers/punkt/PY3/czech.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/PY3/danish.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/PY3/dutch.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/PY3/english.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/PY3/estonian.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/PY3/finnish.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/PY3/french.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/PY3/german.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/PY3/greek.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/PY3/italian.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/PY3/malayalam.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/PY3/norwegian.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/PY3/polish.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/PY3/portuguese.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/PY3/russian.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/PY3/slovene.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/PY3/spanish.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/PY3/swedish.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/PY3/turkish.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/README create mode 100644 models/rankers/nltk_data/tokenizers/punkt/czech.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/danish.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/dutch.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/english.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/estonian.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/finnish.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/french.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/german.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/greek.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/italian.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/malayalam.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/norwegian.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/polish.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/portuguese.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/russian.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/slovene.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/spanish.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/swedish.pickle create mode 100644 models/rankers/nltk_data/tokenizers/punkt/turkish.pickle Git LFS: (1 of 1 files, 1 skipped) 417.72 MB / 417.72 MB, 13.26 MB skipped Counting objects: 304, done. Delta compression using up to 2 threads. Compressing objects: 100% (184/184), done. Writing objects: 100% (304/304), 13.49 MiB | 3.72 MiB/s, done. Total 304 (delta 112), reused 206 (delta 108) remote: Resolving deltas: 100% (112/112), done. remote: remote: ======================================================================== remote: remote: **Maintenance Announcement** : remote: [gitlab.aicrowd.com](gitlab.aicrowd.com) will be undergoing remote: scheduled maintenance between **4th August, 15:00 CEST** - **5th remote: August, 15:00 CEST**. Some instabilities are to be expected, remote: particularly around [GIT-LFS](https://git-lfs.github.com/) remote: interactions. If you are affected by any instability in the course remote: of participation in an ongoing challenge, please reach out to us at remote: [devops@aicrowd.com](mailto:devops@aicrowd.com). remote: remote: ======================================================================== remote: To https://gitlab.aicrowd.com/dipam/iglu-2022-clariq-nlp-starter-kit.git + 586bbdd...10a12c4 master -> master (forced update) Counting objects: 1, done. Writing objects: 100% (1/1), 217 bytes | 217.00 KiB/s, done. Total 1 (delta 0), reused 0 (delta 0) remote: remote: ======================================================================== remote: remote: **Maintenance Announcement** : remote: [gitlab.aicrowd.com](gitlab.aicrowd.com) will be undergoing remote: scheduled maintenance between **4th August, 15:00 CEST** - **5th remote: August, 15:00 CEST**. Some instabilities are to be expected, remote: particularly around [GIT-LFS](https://git-lfs.github.com/) remote: interactions. If you are affected by any instability in the course remote: of participation in an ongoing challenge, please reach out to us at remote: [devops@aicrowd.com](mailto:devops@aicrowd.com). remote: remote: ======================================================================== remote: remote: remote: #///( )///# remote: //// /// //// remote: ///// ////////// //// remote: ///////////////////////// remote: /// /////////////////////// /// remote: /////////////////////////////////// remote: ///////////////////////////////////// remote: )////////////////////////////////( remote: ///// ///// remote: (/////// /// /// //////) remote: /////////// /////// ////////// remote: (///////////////////////////////////////) remote: ///// ///// remote: ///////////////// remote: /////////// remote: To https://gitlab.aicrowd.com/dipam/iglu-2022-clariq-nlp-starter-kit.git * [new tag] submission-BERT-Classifier-and-BM25-Ranker-Official-Baseline -> submission-BERT-Classifier-and-BM25-Ranker-Official-Baseline Check the submission progress in your repository: gitlab.aicrowd.com/dipam/iglu-2022-clariq-nlp-starter-kit/issues
Content
Comments
You must login before you can post a comment.