Loading

Insurance pricing game

Insurance pricing game: EDA

It will help you save time analyzing your data and get a more detailed overview.

mrmorj

Hello everyone! The notebook will be more useful for new competitors. It will help you save time analyzing your data and get a more detailed overview. Hope this is helpful) Also, if I find it useful, I will continue to supplement the notebook.

Link to notebook in Kaggle

Support like it if it is helpful :blush:

This notebook will examine the competition data in more detail! Ideal for new members.

In [1]:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import random
In [2]:
df = pd.read_csv('/kaggle/input/motor-insurance-market/training (1).csv')
In [3]:
df.head()
Out[3]:
id_policy year pol_no_claims_discount pol_coverage pol_duration pol_sit_duration pol_pay_freq pol_payd pol_usage drv_sex1 ... vh_make_model vh_age vh_fuel vh_type vh_speed vh_value vh_weight population town_surface_area claim_amount
0 PL000000 1.0 0.332 Med2 5 1 Monthly No WorkPrivate M ... aparvvfowrjncdhp 8.0 Gasoline Tourism 174.0 11040.0 1143.0 1270.0 33.1 0.0
1 PL042495 1.0 0.000 Med2 6 1 Monthly No WorkPrivate M ... aparvvfowrjncdhp 10.0 Diesel Tourism 174.0 11040.0 1143.0 1290.0 51.3 0.0
2 PL042496 1.0 0.196 Med1 2 1 Yearly Yes Retired M ... iwhqpdfuhrsxyqxe 8.0 Diesel Commercial 150.0 14159.0 1193.0 1020.0 262.8 0.0
3 PL042497 1.0 0.000 Med2 8 5 Yearly No WorkPrivate F ... kvcddisqpkysmvvo 4.0 Gasoline Tourism 149.0 17233.0 1012.0 180.0 219.7 0.0
4 PL042498 1.0 0.000 Med1 2 2 Yearly No Retired F ... tdgkjlphosocwbgu 13.0 Gasoline Tourism 200.0 19422.0 1315.0 30.0 70.3 0.0

5 rows × 26 columns

Understanding data

The training set presents policy data for the last 4 years for each user. Let's check it out.

In [4]:
df.id_policy.value_counts()
Out[4]:
PL008115    4
PL011513    4
PL057669    4
PL033195    4
PL043079    4
           ..
PL088572    4
PL052667    4
PL036222    4
PL028661    4
PL006028    4
Name: id_policy, Length: 57054, dtype: int64

Let's get acquainted with ordinal, categorical and binary features:

Ordinal:

  • pol_coverage: Min, Med1, Med2, Max, in this order.

Categorical:

  • pol_pay_freq: the price of the insurance coverage can be paid anually, bi-anually, quarterly or monthly.
  • pol_usage: WorkPrivate, Retired, Professional, AllTrips.
  • drv_sex1: H or F.
  • drv_sex2: H or F.
  • vh_make_model: hashes representing car models, such as Honda Civic or Fiat Uno.
  • vh_fuel: Diesel, Gasoline or Hybrid.
  • vh_type: Tourism or Commercial.

Boolean:

  • pol_payd: Pay As You Drive. Indicates whether a client subscribed a mileaged-base policy or not.
  • drv_drv2: Indicates the presence of a secondary driver in the contract.

Missing data

In [5]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 228216 entries, 0 to 228215
Data columns (total 26 columns):
 #   Column                  Non-Null Count   Dtype  
---  ------                  --------------   -----  
 0   id_policy               228216 non-null  object 
 1   year                    228216 non-null  float64
 2   pol_no_claims_discount  228216 non-null  float64
 3   pol_coverage            228216 non-null  object 
 4   pol_duration            228216 non-null  int64  
 5   pol_sit_duration        228216 non-null  int64  
 6   pol_pay_freq            228216 non-null  object 
 7   pol_payd                228216 non-null  object 
 8   pol_usage               228216 non-null  object 
 9   drv_sex1                228216 non-null  object 
 10  drv_age1                228216 non-null  float64
 11  drv_age_lic1            228216 non-null  float64
 12  drv_drv2                228216 non-null  object 
 13  drv_sex2                228216 non-null  object 
 14  drv_age2                75320 non-null   float64
 15  drv_age_lic2            75320 non-null   float64
 16  vh_make_model           228216 non-null  object 
 17  vh_age                  228212 non-null  float64
 18  vh_fuel                 228216 non-null  object 
 19  vh_type                 228216 non-null  object 
 20  vh_speed                225664 non-null  float64
 21  vh_value                225664 non-null  float64
 22  vh_weight               225664 non-null  float64
 23  population              228216 non-null  float64
 24  town_surface_area       228216 non-null  float64
 25  claim_amount            228216 non-null  float64
dtypes: float64(13), int64(2), object(11)
memory usage: 45.3+ MB

Note that there is a lot of missing data associated with the second driver. This is most likely due to the fact that there is no second driver. These missing values may need to be categorized into new categories.

Data analysis

Correlations

Unfortunately, there are very few dependencies on the target variable. Getting good predictions won't be easy.)

In [6]:
sns.heatmap(df.corr())
Out[6]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f508cc4fc50>

Target

Let's see what the distribution of the target variable looks like. Expectedly, there are many zeros, which means that the person was not hurt. There is also a long right tail.

In [7]:
sns.distplot(df['claim_amount'], kde=False)
Out[7]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f508c9a2250>
In [8]:
sns.distplot(df[(df['claim_amount'] > 0) & (df['claim_amount'] < 10000)]['claim_amount'], kde=False)
Out[8]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f508c817e90>
In [9]:
sns.boxplot(df['claim_amount'])
Out[9]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f508c70d050>

Now let's look at the ratio of those who have suffered and not.

In [10]:
df['Damage'] = np.where(df['claim_amount'], 1, 0)
sns.countplot(df['Damage'])
Out[10]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f508c71b250>

Categorical features

In [11]:
sns.countplot('pol_coverage', data=df, hue = 'Damage')
Out[11]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f5087759ad0>
In [12]:
sns.countplot('pol_pay_freq', data=df, hue ='Damage')
Out[12]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f5086339a90>
In [13]:
sns.countplot('pol_usage', data=df, hue='Damage')
Out[13]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f50862a5a50>
In [14]:
sns.countplot('drv_sex1', data=df, hue='Damage')
Out[14]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f5086238f50>
In [15]:
sns.countplot('vh_fuel',data=df, hue='Damage')
Out[15]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f50861a3950>
In [16]:
sns.countplot('vh_type',data=df, hue='Damage')
Out[16]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f5086122590>

Crashes

Find out how many users have not received damage for 4 years, as well as the rest who have received damage.

In [17]:
count_damage_per_user = df.groupby('id_policy')['Damage'].sum()
count_damage_per_user.value_counts()
Out[17]:
0    38518
1    14440
2     3495
3      542
4       59
Name: Damage, dtype: int64

Let's explore which data depends and changes over time. For some users, they received that their gender was changed. I think we need to investigate this in more detail.

In [18]:
no_change, change = [], []
for column in df.columns:
    constant_cells = (df.groupby(['id_policy'])[column].value_counts() == 4).all()
    if constant_cells:
        no_change.append(column)
    else:
        change.append(column)
In [19]:
change
Out[19]:
['year',
 'pol_no_claims_discount',
 'pol_duration',
 'pol_sit_duration',
 'pol_pay_freq',
 'drv_sex1',
 'drv_age1',
 'drv_age_lic1',
 'drv_age2',
 'drv_age_lic2',
 'vh_age',
 'population',
 'town_surface_area',
 'claim_amount',
 'Damage']

Comments

MakePredict
Almost 4 years ago

I read it. Not all claims are due to damage to the insured vehicle, if you read the description of pol_coverage you’ll see that all categories cover third party liability.

mrmorj
Almost 4 years ago

Thank you for your comment!

You must login before you can post a comment.

Execute