Research Paper Classification
Solution for submission 148639
A detailed solution for submission 148639 submitted for challenge Research Paper Classification
In [1]:
# Install huggingface library
!pip install --upgrade transformers
!pip install --upgrade simpletransformers
# AI crowd CLI for data download
!pip install aicrowd-cli
In [2]:
# Downloading the Dataset
!mkdir data
In [1]:
import os
import re
import random
import time
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import AdamW, get_linear_schedule_with_warmup
from transformers import BertTokenizer
from transformers import BertModel
from tqdm import tqdm
%matplotlib inline
In [7]:
train_dataset = pd.read_csv("data/train.csv")
validation_dataset = pd.read_csv("data/val.csv")[1:]
train_dataset=pd.concat([train_dataset,validation_dataset],axis=0)
test_dataset = pd.read_csv("data/test.csv")
X_train = train_dataset.text.values
y_train = train_dataset.label.values
X_val = validation_dataset.text.values
y_val = validation_dataset.label.values
In [8]:
if torch.cuda.is_available():
device = torch.device("cuda")
print(f'There are {torch.cuda.device_count()} GPU(s) available.')
print('Device name:', torch.cuda.get_device_name(0))
In [9]:
def text_preprocessing(text):
"""
- Remove entity mentions (eg. '@united')
- Correct errors (eg. '&' to '&')
@param text (str): a string to be processed.
@return text (Str): the processed string.
"""
# Remove '@name'
text = text.lower()
return text
In [10]:
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True, )
# Create a function to tokenize a set of texts
def preprocessing_for_bert(data):
"""Perform required preprocessing steps for pretrained BERT.
@param data (np.array): Array of texts to be processed.
@return input_ids (torch.Tensor): Tensor of token ids to be fed to a model.
@return attention_masks (torch.Tensor): Tensor of indices specifying which
tokens should be attended to by the model.
"""
# Create empty lists to store outputs
input_ids = []
attention_masks = []
# For every sentence...
for sent in data:
# `encode_plus` will:
# (1) Tokenize the sentence
# (2) Add the `[CLS]` and `[SEP]` token to the start and end
# (3) Truncate/Pad sentence to max length
# (4) Map tokens to their IDs
# (5) Create attention mask
# (6) Return a dictionary of outputs
encoded_sent = tokenizer.encode_plus(
text=text_preprocessing(sent), # Preprocess sentence
add_special_tokens=True, # Add `[CLS]` and `[SEP]`
max_length=MAX_LEN, # Max length to truncate/pad
pad_to_max_length=True, # Pad sentence to max length
#return_tensors='pt', # Return PyTorch tensor
return_attention_mask=True, # Return attention mask
truncation=True)
# Add the outputs to the lists
input_ids.append(encoded_sent.get('input_ids'))
attention_masks.append(encoded_sent.get('attention_mask'))
# Convert lists to tensors
input_ids = torch.tensor(input_ids)
attention_masks = torch.tensor(attention_masks)
return input_ids, attention_masks
In [11]:
# Concatenate train data and test data
all_data = np.concatenate([X_train, X_val])
# Encode our concatenated data
encoded_data = [tokenizer.encode(sent, add_special_tokens=True) for sent in all_data]
# Find the maximum length
max_len = max([len(sent) for sent in encoded_data])
print('Max length: ', max_len)
In [12]:
# Specify `MAX_LEN`
MAX_LEN = 100
# Print sentence 0 and its encoded token ids
token_ids = list(preprocessing_for_bert([X_train[0]])[0].squeeze().numpy())
print('Original: ', X_train[0])
print('Token IDs: ', token_ids)
In [13]:
# Run function `preprocessing_for_bert` on the train set and the validation set
print('Tokenizing data...')
train_inputs, train_masks = preprocessing_for_bert(X_train)
val_inputs, val_masks = preprocessing_for_bert(X_val)
# Convert other data types to torch.Tensor
train_labels = torch.tensor(y_train)
val_labels = torch.tensor(y_val)
In [14]:
%%time
# Create the BertClassfier class
class BertClassifier(nn.Module):
"""Bert Model for Classification Tasks.
"""
def __init__(self, freeze_bert=False):
"""
@param bert: a BertModel object
@param classifier: a torch.nn.Module classifier
@param freeze_bert (bool): Set `False` to fine-tune the BERT model
"""
super(BertClassifier, self).__init__()
# Specify hidden size of BERT, hidden size of our classifier, and number of labels
D_in, H, D_out = 768, 16, 4
# Instantiate BERT model
self.bert = BertModel.from_pretrained('bert-base-uncased')
# Instantiate an one-layer feed-forward classifier
self.classifier = nn.Sequential(
nn.Linear(D_in, H),
nn.ReLU(),
#nn.Dropout(0.5),
nn.Linear(H, D_out)
)
# Freeze the BERT model
if freeze_bert:
for param in self.bert.parameters():
param.requires_grad = False
def forward(self, input_ids, attention_mask):
"""
Feed input to BERT and the classifier to compute logits.
@param input_ids (torch.Tensor): an input tensor with shape (batch_size,
max_length)
@param attention_mask (torch.Tensor): a tensor that hold attention mask
information with shape (batch_size, max_length)
@return logits (torch.Tensor): an output tensor with shape (batch_size,
num_labels)
"""
# Feed input to BERT
outputs = self.bert(input_ids=input_ids,
attention_mask=attention_mask)
# Extract the last hidden state of the token `[CLS]` for classification task
last_hidden_state_cls = outputs[0][:, 0, :]
# Feed input to classifier to compute logits
logits = self.classifier(last_hidden_state_cls)
return logits
def initialize_model(epochs=4):
"""Initialize the Bert Classifier, the optimizer and the learning rate scheduler.
"""
# Instantiate Bert Classifier
bert_classifier = BertClassifier(freeze_bert=False)
# Tell PyTorch to run the model on GPU
bert_classifier.to(device)
# Create the optimizer
optimizer = AdamW(bert_classifier.parameters(),
lr=3e-5, # Default learning rate
eps=1e-8 # Default epsilon value
)
# Total number of training steps
total_steps = len(train_dataloader) * epochs
# Set up the learning rate scheduler
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=0, # Default value
num_training_steps=total_steps)
return bert_classifier, optimizer, scheduler
In [15]:
# Specify loss function
loss_fn = nn.CrossEntropyLoss()
def set_seed(seed_value=42):
"""Set seed for reproducibility.
"""
random.seed(seed_value)
np.random.seed(seed_value)
torch.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value)
def train(model, train_dataloader, val_dataloader=None, epochs=4, evaluation=False):
"""Train the BertClassifier model.
"""
# Start training loop
print("Start training...\n")
for epoch_i in range(epochs):
# =======================================
# Training
# =======================================
# Print the header of the result table
print(f"{'Epoch':^7} | {'Batch':^7} | {'Train Loss':^12} | {'Val Loss':^10} | {'Val Acc':^9} | {'Elapsed':^9}")
print("-"*70)
# Measure the elapsed time of each epoch
t0_epoch, t0_batch = time.time(), time.time()
# Reset tracking variables at the beginning of each epoch
total_loss, batch_loss, batch_counts = 0, 0, 0
# Put the model into the training mode
model.train()
# For each batch of training data...
for step, batch in enumerate(train_dataloader):
batch_counts +=1
# Load batch to GPU
b_input_ids, b_attn_mask, b_labels = tuple(t.to(device) for t in batch)
# Zero out any previously calculated gradients
model.zero_grad()
# Perform a forward pass. This will return logits.
logits = model(b_input_ids, b_attn_mask)
# Compute loss and accumulate the loss values
loss = loss_fn(logits, b_labels)
batch_loss += loss.item()
total_loss += loss.item()
# Perform a backward pass to calculate gradients
loss.backward()
# Clip the norm of the gradients to 1.0 to prevent "exploding gradients"
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# Update parameters and the learning rate
optimizer.step()
scheduler.step()
# Print the loss values and time elapsed for every 20 batches
if (step % 20 == 0 and step != 0) or (step == len(train_dataloader) - 1):
# Calculate time elapsed for 20 batches
time_elapsed = time.time() - t0_batch
# Print training results
print(f"{epoch_i + 1:^7} | {step:^7} | {batch_loss / batch_counts:^12.6f} | {'-':^10} | {'-':^9} | {time_elapsed:^9.2f}")
# Reset batch tracking variables
batch_loss, batch_counts = 0, 0
t0_batch = time.time()
# Calculate the average loss over the entire training data
avg_train_loss = total_loss / len(train_dataloader)
print("-"*70)
# =======================================
# Evaluation
# =======================================
if evaluation == True:
# After the completion of each training epoch, measure the model's performance
# on our validation set.
val_loss, val_accuracy = evaluate(model, val_dataloader)
# Print performance over the entire training data
time_elapsed = time.time() - t0_epoch
print(f"{epoch_i + 1:^7} | {'-':^7} | {avg_train_loss:^12.6f} | {val_loss:^10.6f} | {val_accuracy:^9.2f} | {time_elapsed:^9.2f}")
print("-"*70)
print("\n")
print("Training complete!")
def evaluate(model, val_dataloader):
"""After the completion of each training epoch, measure the model's performance
on our validation set.
"""
# Put the model into the evaluation mode. The dropout layers are disabled during
# the test time.
model.eval()
# Tracking variables
val_accuracy = []
val_loss = []
# For each batch in our validation set...
for batch in val_dataloader:
# Load batch to GPU
b_input_ids, b_attn_mask, b_labels = tuple(t.to(device) for t in batch)
# Compute logits
with torch.no_grad():
logits = model(b_input_ids, b_attn_mask)
# Compute loss
loss = loss_fn(logits, b_labels)
val_loss.append(loss.item())
# Get the predictions
preds = torch.argmax(logits, dim=1).flatten()
# Calculate the accuracy rate
accuracy = (preds == b_labels).cpu().numpy().mean() * 100
val_accuracy.append(accuracy)
# Compute the average accuracy and loss over the validation set.
val_loss = np.mean(val_loss)
val_accuracy = np.mean(val_accuracy)
return val_loss, val_accuracy
def bert_predict(model, test_dataloader):
"""Perform a forward pass on the trained BERT model to predict probabilities
on the test set.
"""
# Put the model into the evaluation mode. The dropout layers are disabled during
# the test time.
model.eval()
all_logits = []
# For each batch in our test set...
for batch in test_dataloader:
# Load batch to GPU
b_input_ids, b_attn_mask = tuple(t.to(device) for t in batch)[:2]
# Compute logits
with torch.no_grad():
logits = model(b_input_ids, b_attn_mask)
all_logits.append(logits)
# Concatenate logits from each batch
all_logits = torch.cat(all_logits, dim=0)
# Apply softmax to calculate probabilities
probs = F.softmax(all_logits, dim=1).cpu().numpy()
return probs
In [16]:
# For fine-tuning BERT, the authors recommend a batch size of 16 or 32.
batch_size = 8
# Create the DataLoader for our training set
train_data = TensorDataset(train_inputs, train_masks, train_labels)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=batch_size)
# Create the DataLoader for our validation set
val_data = TensorDataset(val_inputs, val_masks, val_labels)
val_sampler = SequentialSampler(val_data)
val_dataloader = DataLoader(val_data, sampler=val_sampler, batch_size=batch_size)
# Concatenate the train set and the validation set
full_train_data = torch.utils.data.ConcatDataset([train_data, val_data])
full_train_sampler = RandomSampler(full_train_data)
full_train_dataloader = DataLoader(full_train_data, sampler=full_train_sampler, batch_size=8)
# Train the Bert Classifier on the entire training data
set_seed(42)
bert_classifier, optimizer, scheduler = initialize_model(epochs=3)
train(bert_classifier, train_dataloader, epochs=3)
# train(bert_classifier, full_train_dataloader, epochs=1)
evaluate(bert_classifier, val_dataloader)
Out[16]:
In [17]:
# Run `preprocessing_for_bert` on the test set
test_data = pd.read_csv('data/test.csv')
print('Tokenizing data...')
test_inputs, test_masks = preprocessing_for_bert(test_data.text)
# Create the DataLoader for our test set
test_dataset = TensorDataset(test_inputs, test_masks)
test_sampler = SequentialSampler(test_dataset)
test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=8)
In [18]:
# Compute predicted probabilities on the test set
probs = bert_predict(bert_classifier, test_dataloader)
# Get predictions from the probabilities
# Since it is multi class, we take argmax for label
preds = np.argmax(probs, axis=1)
test_data['label'] = preds
test_data['label'].value_counts(normalize=True)
Out[18]:
In [19]:
!mkdir assets
# Saving the sample submission in assets directory
test_data.to_csv(os.path.join("assets", "submission.csv"), index=False)
In [ ]:
In [17]:
Content
Comments
You must login before you can post a comment.