Sequential(
(0): BasicConv2d(
(conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(3): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): BasicConv2d(
(conv): Conv2d(64, 80, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(80, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(5): BasicConv2d(
(conv): Conv2d(80, 192, kernel_size=(3, 3), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(6): BasicConv2d(
(conv): Conv2d(192, 256, kernel_size=(3, 3), stride=(2, 2), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(7): Sequential(
(0): Block35(
(branch0): BasicConv2d(
(conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(branch2): Sequential(
(0): BasicConv2d(
(conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(96, 256, kernel_size=(1, 1), stride=(1, 1))
(relu): ReLU()
)
(1): Block35(
(branch0): BasicConv2d(
(conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(branch2): Sequential(
(0): BasicConv2d(
(conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(96, 256, kernel_size=(1, 1), stride=(1, 1))
(relu): ReLU()
)
(2): Block35(
(branch0): BasicConv2d(
(conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(branch2): Sequential(
(0): BasicConv2d(
(conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(96, 256, kernel_size=(1, 1), stride=(1, 1))
(relu): ReLU()
)
(3): Block35(
(branch0): BasicConv2d(
(conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(branch2): Sequential(
(0): BasicConv2d(
(conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(96, 256, kernel_size=(1, 1), stride=(1, 1))
(relu): ReLU()
)
(4): Block35(
(branch0): BasicConv2d(
(conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(branch2): Sequential(
(0): BasicConv2d(
(conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(96, 256, kernel_size=(1, 1), stride=(1, 1))
(relu): ReLU()
)
)
(8): Mixed_6a(
(branch0): BasicConv2d(
(conv): Conv2d(256, 384, kernel_size=(3, 3), stride=(2, 2), bias=False)
(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(256, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(192, 256, kernel_size=(3, 3), stride=(2, 2), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(branch2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(9): Sequential(
(0): Block17(
(branch0): BasicConv2d(
(conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(256, 896, kernel_size=(1, 1), stride=(1, 1))
(relu): ReLU()
)
(1): Block17(
(branch0): BasicConv2d(
(conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(256, 896, kernel_size=(1, 1), stride=(1, 1))
(relu): ReLU()
)
(2): Block17(
(branch0): BasicConv2d(
(conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(256, 896, kernel_size=(1, 1), stride=(1, 1))
(relu): ReLU()
)
(3): Block17(
(branch0): BasicConv2d(
(conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(256, 896, kernel_size=(1, 1), stride=(1, 1))
(relu): ReLU()
)
(4): Block17(
(branch0): BasicConv2d(
(conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(256, 896, kernel_size=(1, 1), stride=(1, 1))
(relu): ReLU()
)
(5): Block17(
(branch0): BasicConv2d(
(conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(256, 896, kernel_size=(1, 1), stride=(1, 1))
(relu): ReLU()
)
(6): Block17(
(branch0): BasicConv2d(
(conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(256, 896, kernel_size=(1, 1), stride=(1, 1))
(relu): ReLU()
)
(7): Block17(
(branch0): BasicConv2d(
(conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(256, 896, kernel_size=(1, 1), stride=(1, 1))
(relu): ReLU()
)
(8): Block17(
(branch0): BasicConv2d(
(conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(256, 896, kernel_size=(1, 1), stride=(1, 1))
(relu): ReLU()
)
(9): Block17(
(branch0): BasicConv2d(
(conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(256, 896, kernel_size=(1, 1), stride=(1, 1))
(relu): ReLU()
)
)
(10): Mixed_7a(
(branch0): Sequential(
(0): BasicConv2d(
(conv): Conv2d(896, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(256, 384, kernel_size=(3, 3), stride=(2, 2), bias=False)
(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(896, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(branch2): Sequential(
(0): BasicConv2d(
(conv): Conv2d(896, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(branch3): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(11): Sequential(
(0): Block8(
(branch0): BasicConv2d(
(conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(192, 192, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(192, 192, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(384, 1792, kernel_size=(1, 1), stride=(1, 1))
(relu): ReLU()
)
(1): Block8(
(branch0): BasicConv2d(
(conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(192, 192, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(192, 192, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(384, 1792, kernel_size=(1, 1), stride=(1, 1))
(relu): ReLU()
)
(2): Block8(
(branch0): BasicConv2d(
(conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(192, 192, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(192, 192, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(384, 1792, kernel_size=(1, 1), stride=(1, 1))
(relu): ReLU()
)
(3): Block8(
(branch0): BasicConv2d(
(conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(192, 192, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(192, 192, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(384, 1792, kernel_size=(1, 1), stride=(1, 1))
(relu): ReLU()
)
(4): Block8(
(branch0): BasicConv2d(
(conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(192, 192, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(192, 192, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(384, 1792, kernel_size=(1, 1), stride=(1, 1))
(relu): ReLU()
)
)
(12): Block8(
(branch0): BasicConv2d(
(conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(branch1): Sequential(
(0): BasicConv2d(
(conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(1): BasicConv2d(
(conv): Conv2d(192, 192, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
(2): BasicConv2d(
(conv): Conv2d(192, 192, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)
(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU()
)
)
(conv2d): Conv2d(384, 1792, kernel_size=(1, 1), stride=(1, 1))
)
(13): AdaptiveAvgPool2d(output_size=1)
)